

Governance Model in Action: The New Horizons RP-1 Tank Decision

Matt Kohut
NASA Academy Case Study Initiative
Masters Forum
October 16, 2007
Academy of Program/Project & Engineering Leadership

New Horizons Overview

- First mission to Pluto
- Planned launch in mid-January 2006

Project management challenge:
Schedule driven by short launch window – Jupiter gravity assist in February 2007 will shave years off mission

Launch Date (2006)	Pluto Arrival (close approach)	
Jan. 17-27	July 14, 2015	
Jan. 28	August 15, 2015	
Jan. 29-31	July 12, 2016	
Feb. 1-2	July 11, 2017	
Feb. 3-8	July 10, 2018	
Feb. 9-12	June 7, 2019	
Feb. 13-14	July 20, 2020	

(Chart source: JHU/APL Mission Guide)

Complex Organizational Structure

RP-1 Tank Fails during Qualification Testing

Mid-September 2005

- Atlas V launch vehicle first NASA use of heavy configuration requires re-qualification of flight hardware
- Catastrophic failure during final stages of qualification testing of Atlas V RP-1 fuel tank

Multiple Lines of Inquiry

Failure investigated by contractor, KSC Launch Services Program (LSP), KSC S&MA, and NASA Engineering Safety Center (NESC)

	Administrator/Associate Administrator		
	PROGRAM AUTHORITY	SAFETY & MISSION ASSURANCE	ENGINEERING TECHNICAL AUTHORITY
Headquarters	Space Operations Mission Directorate	Safety & Mission Assurance	Office of the Chief Engineer ↓
(Cross-agency)			NESC
Center level	KSC Launch Services Program	KSC S&MA	matrixed to support KSC S&MA

Academy of Program/Project & Engineering Leadership

The Technical Problem

- Problem isolated to inner tank wall near LO₂
 feed line
- Cracks discovered in pre-test photos of qualification tank
- All existing RP-1 tanks in fleet investigated
- Extensive materials and structural analyses conducted

LO₂ feed line

Same Problem, Different Answers

Nov-Dec. 2005: Shared preliminary conclusions

- RP-1 tank employed marginal design
- > Not possible to fly fully qualified flight hardware in Jan. '06

KSC LSP proposes mitigations

- ➤ Borescope investigation of flight tank show no signs of problems
- Proposes altered flight profile to minimize loads at key points during ascent

KSC S&MA and NESC want more time to investigate

- Problems with most other tanks in fleet – cracks
- More data required from contractor
- Risk to mission success unacceptably high

The Nuclear Factor

Nuclear Power Supply Affects the Equation

- Almost no chance of public safety hazard
 - Extremely resilient design with long track record
 - Most likely failure would occur over ocean with no radiation release

 High certainty of public relations disaster if launch fails

☑ Requires White House approval

Final Flight Planning Board Meeting

- Differences of opinion presented at 1/10/06 Flight
 Planning Board meeting
 - ➤ AA for Space Ops (Chair)
 - ➤ Chief Engineer
 - ➤ Chief Officer of Safety & Mission Assurance
 - > AA of Science Mission Directorate
 - Director of Kennedy Space Center
- Nearly 30 attend meeting, others via telecon
- Administrator and Associate Administrator invited dissenting votes anticipated.

NASA

Go/No-Go

GO

- Flight tank visually inspected twice and found flawless.
- Mission profile tailored to minimize possibility of launch failure over land.
- Failed qualification tank already cracked when testing process began.
 - Survived until final stages of testing with cracks.
- Perfect tank would have adequate margin under the specific flight conditions for this mission.

NO-GO

- Tank not fully qualified flight hardware.
- Inadequate design that had failed catastrophically
- Flight rationale offered based solely on flight tank evidence
- Failure mechanisms and margin not established by traditional validation practices.
- Not been enough time to develop necessary models to determine failure mechanisms and margin.

Governance Model in Action

- Launch Services, S&MA, and NESC present points of view
- Opinions solicited from others in attendance
- Chair polls Flight Planning Board voting members –
 2 "delay" votes
 - ➤ Chief S&MA Officer
 - Chief Engineer
- Dissent triggers automatic appeal by Chair to Administrator...

Decision Time

Administrator reviews the situation:

- Lack of qualified flight hardware: from a formal process standpoint, NASA flies only qualified hardware.
- Good engineering requires judgment: is this particular tank suitable to fly?

and the evidence:

- Qualification tank had survived very rigorous testing with cracks up to ~95% of its final test.
- Flight tank exhibited superior material properties to qualification tank, and had been inspected and found crack-free.
- Flight tank would withstand much lower pressures than qualification tank in testing.
- RTG release of nuclear material in the event of launch failure not a credible concern.
- Decides in favor of program's position to proceed.

Academy of Program/Project & Engineering Leadership

The Flight Planning Board understands the residual risk associated with the AV-010 RP-1 tank and the mitigations taken by the Launch Service Contractor and Launch Services Program's engineering staff. In the view of the Flight Planning Board Chairman, the risk from the RP-1 tank is understood and acceptable. The Flight Planning Board recognizes the independent risk ratings provided by the Program's technical team and the SMA/NESC. The efforts in mitigating the risk and rationale for the flight provide for the highest practical probability of mission success for the New Horizon mission.

NASA

0 1 7006

Willia H Guste

10 JAN 2006

Conclusions

The governance model worked

- Dissenting opinions presented in atmosphere of mutual respect.
- 2. All views aired at final Flight Planning Board meeting, even those of nonvoting members.
- 3. Transparent decision-making process.
- 4. Set governance precedent for similar decisions (STS-121 ice/frost ramp).

